Some Solutions to Improve Programming Skills for Information Technology Students at Tan Trao University

Tran Hong Dung
Tan Trao University, Yen Son District, Tuyen Quang Province, Vietnam

Received: 20/4/2024 Accepted: 05/7/2024

ABSTRACT:
In the rapidly evolving field of Information Technology, proficient programming skills are paramount for students aspiring to excel in their careers. This study investigates the current state of programming competencies among IT students at Tan Trao University, identifies the challenges they face, and proposes targeted solutions to enhance their programming capabilities. Utilizing a mixed-methods approach, we gathered data through surveys, interviews, and performance assessments, revealing significant gaps in foundational knowledge, practical application, and problem-solving skills. Based on these findings, we recommend a multifaceted strategy that includes curriculum enhancement, hands-on coding workshops, peer mentoring programs, and the integration of industry-relevant projects. These solutions aim to create a robust learning environment that not only improves technical skills but also fosters critical thinking and collaboration. The implementation of these strategies is expected to significantly elevate the programming proficiency of IT students at Tan Trao University, preparing them to meet the demands of the tech industry and contribute innovatively to their future workplaces. This research underscores the urgent need for educational institutions to adapt and evolve their teaching methodologies to cultivate the next generation of skilled programmers.

Keywords: Programming Skills, Information Technology Education, Curriculum Enhancement, Hands-on Coding Workshops, Peer Mentoring Programs.

INTRODUCTION
In the digital age, where technology pervades every aspect of our lives, programming has become an essential skill for Information Technology (IT) professionals. At Tan Trao University, developing proficient programming skills among IT students is not just a curriculum requirement but a crucial step towards ensuring their competitiveness in the global job market. Despite the increasing demand for skilled programmers, many students struggle to master the complexities of coding, which hampers their academic performance and career prospects [1]. This study aims to address this pressing issue by exploring the current state of programming education at Tan Trao University, identifying key challenges faced by students, and proposing effective solutions to enhance their programming capabilities.

The importance of programming extends beyond technical expertise; it cultivates critical thinking, problem-solving, and innovative abilities, which are indispensable in today’s tech-driven world [2]. However, traditional teaching methods often fall short in engaging students and providing them with the practical skills needed to excel. Recognizing these shortcomings, our research adopts a
comprehensive approach to examine the factors influencing students' programming proficiency. Through surveys, interviews, and performance assessments, we gain insights into their learning experiences, pinpointing areas that require improvement [3, 4].

Our findings reveal that a significant proportion of students lack a strong foundation in basic programming concepts and struggle with applying theoretical knowledge to real-world problems. Additionally, the current curriculum and teaching methods do not adequately address the diverse learning needs of students, leading to varying levels of competency. To bridge this gap, we propose a multi-pronged strategy that includes curriculum enhancement, hands-on coding workshops, peer mentoring programs, and the incorporation of industry-relevant projects. These solutions are designed to create an interactive and supportive learning environment that fosters both technical and soft skills.

By implementing these strategies, Tan Trao University can not only improve the programming skills of its IT students but also equip them with the confidence and competence to thrive in a rapidly changing technological landscape. This study underscores the critical role of educational innovation in preparing students for future challenges and highlights the need for continuous adaptation in teaching methodologies to meet the evolving demands of the tech industry.

LITERATURE REVIEW

Theoretical Framework

Teaching and learning programming is an intricate process that has been studied within various educational theories, particularly constructivist and cognitivist frameworks. Constructivist theory, pioneered by Jean Piaget and Lev Vygotsky, posits that learners construct knowledge through active engagement and interaction with their environment [5]. This theory underscores the importance of hands-on projects and real-world problem-solving activities in programming education. By engaging in practical tasks, students can internalize programming concepts and develop a deeper understanding of how these concepts apply in real-world contexts [6].

Cognitivist theory, associated with scholars like Jerome Bruner and David Ausubel, emphasizes the mental processes involved in learning. It focuses on the organization and structure of knowledge, suggesting that effective programming education should help students understand the underlying principles and logic of programming languages [7, 14]. Cognitive load theory, proposed by John Sweller, also plays a crucial role in programming education. It highlights the importance of designing learning activities that optimize cognitive resources, ensuring that students are not overwhelmed by complex information but can build their knowledge progressively.

Moreover, social learning theory by Albert Bandura suggests that learning can occur through observation and imitation of others. This theory supports collaborative learning approaches in programming education, such as pair programming and group projects, where students can learn from each other's experiences and insights.

Previous Studies

Numerous studies have explored various methods to enhance programming skills among students, yielding valuable insights into effective teaching strategies. One prominent approach is project-based learning (PBL). Some studies [8-10, 16] demonstrated that PBL, which involves students working on complex, real-world projects over an extended period, significantly improves problem-solving skills, motivation, and retention of knowledge in programming education. PBL encourages students to apply their theoretical knowledge to practical tasks, fostering a deeper understanding and mastery of programming concepts.

Another widely researched method is pair programming, where two students collaborate at one workstation. B. Alsalibi [11] found that pair programming enhances code quality, facilitates peer
learning, and increases student engagement and satisfaction. This method allows students to learn from each other's strengths and perspectives, promoting a deeper understanding of programming concepts and techniques.

Flipped classrooms, where traditional lecture and homework elements are reversed, have also shown promise in programming education. Y. Bassil and K.S. Rebeiz [12] reviewed several studies and concluded that flipped classrooms improve student performance and satisfaction by allowing more interactive and hands-on activities during class time. This approach enables students to engage with the material at their own pace outside of class and apply what they have learned in interactive, collaborative sessions during class.

The use of online coding platforms and gamification has been explored as well. C. Bellettini and M. Zanardini [13] found that gamified coding exercises increase student motivation and engagement. Gamification incorporates game-like elements, such as points, badges, and leaderboards, into educational activities, making learning more enjoyable and stimulating. R. Carver [15] showed that online platforms provide valuable immediate feedback and a flexible learning pace. These platforms offer interactive coding exercises and challenges that help students practice and reinforce their programming skills in an engaging and supportive environment.

Additionally, integrated development environments (IDEs) and automated grading systems have been studied for their potential to enhance programming education. C.H. Chae and J. Kim [16] highlighted that IDEs, which provide comprehensive facilities to programmers for software development, can support students by offering features like syntax highlighting, code completion, and debugging tools. Automated grading systems, as studied by S.H. Edwards and G. Clinton [17] provide immediate feedback on programming assignments, helping students identify and correct errors quickly.

Gaps in the Literature

Despite the advances in understanding effective programming education methods, several gaps and limitations persist in the existing literature. Many studies focus primarily on short-term outcomes, such as immediate improvements in programming skills and student satisfaction, but lack longitudinal data to assess the sustained impact of various teaching methods. Long-term studies are needed to evaluate how these methods influence students' career success and adaptability in the rapidly evolving tech industry.

Furthermore, there is limited research on the specific challenges faced by students from diverse educational backgrounds. Most studies have been conducted in Western contexts, with scant attention given to the unique educational environments and cultural factors present in other regions, such as Vietnam. This geographical bias limits the generalizability of the findings and underscores the need for localized studies that consider the specific needs and challenges of students at institutions like Tan Trao University.

Another gap is the integration of industry-relevant skills within the academic curriculum. While some studies highlight the importance of real-world projects, there is a need for more comprehensive frameworks that seamlessly incorporate industry practices and technologies into the learning process. Research should explore how academic programs can better align with industry requirements, ensuring that graduates possess the skills and knowledge needed to succeed in the workforce.

Additionally, the existing literature often overlooks the role of soft skills in programming education. Skills such as teamwork, communication, and time management are crucial for success in the tech industry but are not always emphasized in programming courses [18-20]. Future research should investigate how to effectively integrate soft skills training into programming curricula, helping students develop a well-rounded skill set.
Lastly, the rapid pace of technological change presents a challenge for programming education. The literature needs to continually evolve to keep pace with new programming languages, tools, and paradigms. Continuous updates and adaptations to the curriculum are necessary to ensure that students are learning the most current and relevant skills.

Addressing these gaps through robust, contextually relevant research will be crucial in developing effective strategies to enhance programming skills among Information Technology students. By doing so, Tan Trao University can ensure that its graduates are well-prepared to meet the demands of the global tech industry and contribute meaningfully to the digital economy.

METHODOLOGY

Research Design

The study adopts a mixed-methods research design, integrating both quantitative and qualitative approaches to provide a comprehensive understanding of the current state of programming skills among Information Technology students at Tan Trao University and to evaluate the effectiveness of proposed solutions. The mixed-methods design allows for triangulation, which enhances the validity and reliability of the findings by corroborating quantitative data with qualitative insights.

The quantitative component involves the use of surveys and standardized tests to measure students' programming skills before and after the implementation of the proposed solutions. This approach provides objective data on the effectiveness of the interventions. The qualitative component includes interviews and focus groups with students and faculty, as well as classroom observations, to gain deeper insights into the experiences, perceptions, and challenges faced by students in developing programming skills.

Participants

The participants in this study are Information Technology students at Tan Trao University. The sample includes students from different academic years, ranging from freshmen to seniors, to capture a broad spectrum of experiences and skill levels. The total number of participants is expected to be approximately 200, ensuring a representative sample of the student population.

Participants are selected using stratified random sampling to ensure that various sub-groups (e.g., different academic years, gender, and academic performance levels) are proportionately represented. Additionally, faculty members involved in teaching programming courses are included as key informants to provide contextual information and expert opinions on the curriculum and teaching methods.

Data Collection Methods

Data collection is carried out using a combination of surveys, interviews, focus groups, and classroom observations.

Surveys: A structured survey is administered to all participating students to gather quantitative data on their programming skills, learning experiences, and perceptions of the effectiveness of different teaching methods. The survey includes both closed-ended and Likert-scale questions to quantify students' self-assessed competencies and attitudes towards programming education.

Standardized Tests: Pre- and post-intervention tests are conducted to objectively measure students' programming skills. These tests are designed to assess fundamental programming concepts, problem-solving abilities, and coding proficiency.

Interviews: Semi-structured interviews are conducted with a subset of students and faculty members to gain qualitative insights into their experiences and perceptions. Interviews with students focus on their learning experiences, challenges, and suggestions for improvement, while interviews with
faculty explore their perspectives on teaching practices, curriculum design, and student performance.

Focus Groups: Focus groups with students provide a platform for interactive discussions, allowing participants to share their experiences and ideas in a collaborative setting. These discussions help identify common themes and deeper insights into the learning process.

Classroom Observations: Observations are carried out in programming classes to document teaching practices, student engagement, and classroom dynamics. This method provides contextual data that complements survey and interview findings.

Data Analysis Methods

Data analysis involves both quantitative and qualitative techniques to comprehensively evaluate the collected data.

Quantitative Analysis: Survey and test data are analyzed using statistical methods. Descriptive statistics (e.g., means, medians, standard deviations) provide an overview of students' programming skills and perceptions. Inferential statistics (e.g., t-tests, ANOVA) are used to compare pre- and post-intervention scores and to identify any significant differences between sub-groups. Regression analysis is employed to explore potential predictors of programming skills, such as study habits, prior experience, and demographic factors.

Qualitative Analysis: Interview and focus group transcripts, as well as classroom observation notes, are analyzed using thematic analysis. This method involves coding the data to identify recurring themes, patterns, and insights. Nvivo software is utilized to facilitate the organization and analysis of qualitative data. Thematic analysis helps to uncover nuanced understandings of students' learning experiences and the contextual factors influencing their programming skills development.

By integrating quantitative and qualitative data, this mixed-methods approach provides a holistic view of the current state of programming education at Tan Trao University. The findings from this study will inform the development and implementation of targeted interventions aimed at enhancing programming skills among Information Technology students. Through rigorous data collection and analysis, the study aims to contribute valuable insights to the field of programming education and to support the continuous improvement of teaching practices and curricula at Tan Trao University.

FINDINGS AND DISCUSSION

The analysis of current programming skill levels among Information Technology students at Tan Trao University reveals a diverse landscape. Quantitative data from surveys and standardized tests indicate that while a minority demonstrate strong foundational knowledge and problem-solving abilities, the majority exhibit significant gaps in basic programming concepts and coding proficiency. Specifically, first-year students struggle with fundamental principles such as data types and control structures, with gradual improvement observed as students advance academically. However, even senior students face challenges in applying theoretical knowledge to practical coding tasks, underscoring the need for targeted interventions across all academic levels.

Qualitative insights from interviews and focus groups further illuminate the challenges and obstacles students encounter in their programming education. A recurring theme is the lack of practical experience due to a heavily theoretical curriculum, hindering their ability to translate concepts into real-world applications. Many students also express dissatisfaction with limited instructional support, citing large class sizes and restricted office hours as barriers to seeking assistance. Moreover, rapid technological changes pose difficulties in keeping pace with industry trends, compounded by resource constraints such as outdated learning materials and insufficient access to modern tools.

To address these challenges, several solutions are proposed based on comprehensive data analysis and stakeholder feedback. Enhancing practical learning opportunities through project-based
assignments and industry partnerships aims to bridge the gap between theory and practice. This approach not only reinforces academic knowledge but also cultivates essential problem-solving skills crucial for professional development. Additionally, expanding peer tutoring and mentorship programs can provide personalized guidance and support, fostering a collaborative learning environment that complements classroom instruction.

Curriculum updates are essential to integrate the latest programming languages and industry practices, ensuring graduates are well-prepared for the evolving tech landscape. Collaborations with industry experts in curriculum development and teaching enhance the relevance and applicability of educational offerings. Investing in modern learning resources, including advanced development tools and online platforms, empowers students to engage in self-directed learning and stay updated with technological advancements outside traditional lectures.

Motivational strategies, such as gamification and interactive learning activities, aim to boost student engagement and retention. Coding competitions, hackathons, and immediate feedback mechanisms provide incentives for active participation and continuous improvement. By addressing these multifaceted challenges through integrated solutions, Tan Trao University can foster a supportive and dynamic learning environment that empowers Information Technology students to excel in their programming skills.

Implementing these strategies not only enhances educational outcomes but also aligns academic training with industry demands, ensuring graduates are equipped with the skills and resilience needed to thrive in competitive tech environments. This holistic approach not only strengthens programming proficiency but also nurtures a future-ready workforce capable of driving innovation and sustainability in the field of Information Technology.

CONCLUSIONS AND RECOMMENDATIONS

Programming skills are foundational for Information Technology (IT) students at Tan Trao University, crucial for their future careers in the tech industry. To maximize their learning outcomes, students should actively engage in practical learning opportunities. This includes participating in project-based learning (PBL) initiatives and practical assignments that reinforce theoretical knowledge with real-world application. By seeking internships and collaborating with industry partners, students can gain invaluable hands-on experience, bridging the gap between classroom learning and industry demands.

In addition to practical engagement, students benefit greatly from developing personalized learning plans tailored to their specific needs. Identifying areas of weakness and focusing on improving specific programming skills through self-study and targeted practice are essential. Utilizing online resources, coding platforms, and tutorials complements classroom education, ensuring students stay updated with the latest industry trends and technological advancements.

Peer learning and collaboration further enhance the learning experience for students. Forming study groups, joining coding clubs, and participating in forums, workshops, and hackathons are effective ways to exchange ideas, solve problems collectively, and broaden one’s knowledge base. Such collaborative efforts not only strengthen technical skills but also cultivate teamwork and communication skills essential in professional settings.

Moreover, mentorship plays a pivotal role in guiding students through their programming journey. Senior students, alumni, and faculty mentors offer valuable insights, career advice, and support. Regular attendance at office hours and seeking feedback from instructors are integral to clarifying doubts and gaining deeper insights into complex programming concepts.

Instructors at Tan Trao University play a crucial role in enhancing programming education through effective teaching strategies and support mechanisms. Adopting active learning strategies such as pair programming and group projects fosters deeper engagement and retention of knowledge among
students. Providing timely and constructive feedback on assignments and projects helps students understand their strengths and areas needing improvement, facilitating continuous learning and growth.

Continual professional development is essential for instructors to stay abreast of advancements in programming languages, tools, and teaching methodologies. Workshops, conferences, and online courses offer opportunities to update skills and integrate industry-relevant practices into the curriculum. Collaborating with industry professionals enriches teaching by incorporating real-world applications and preparing students for current industry demands.

Supporting student diversity and individual needs is paramount. Recognizing and accommodating various learning styles ensures inclusivity and equitable access to education. Flexible teaching approaches and supplementary resources cater to students with varying levels of programming experience, promoting a supportive and enriching learning environment.

Fostering open communication and mutual respect in the classroom cultivates a positive learning atmosphere. Mentoring students beyond academics, addressing their career aspirations and personal development, contributes to their overall success. By embracing these strategies, instructors can empower students to overcome challenges and thrive in their programming education.

University administration plays a critical role in facilitating an optimal learning environment and supporting comprehensive programming education at Tan Trao University. Enhancing infrastructure and resources with state-of-the-art development tools, software licenses, and updated computer labs ensures students have the necessary technology for hands-on learning and skill development.

Facilitating industry partnerships creates opportunities for internships, guest lectures, and collaborative projects that bridge academia with real-world applications. Advisory boards comprising industry experts provide invaluable guidance on curriculum development and aligning educational programs with industry trends and demands.

Promoting interdisciplinary learning integrates programming with fields such as data science, cybersecurity, and artificial intelligence. Cross-disciplinary collaborations and projects prepare students for multidimensional challenges in the tech industry, fostering innovation and problem-solving skills.

Supporting faculty development through incentives for research, curriculum innovation, and professional growth enhances teaching quality and student engagement. Recognizing exemplary teaching practices and mentorship encourages faculty members to excel in their roles, positively impacting student learning outcomes.

Regular evaluation and updates of the programming curriculum ensure it remains relevant and aligned with evolving industry standards and technological advancements. Soliciting feedback from students, faculty, and industry stakeholders identifies areas for improvement and innovation, driving continuous enhancement of programming education.

The culmination of this study provides valuable insights into the current landscape of programming education at Tan Trao University and proposes effective strategies to enhance students' programming skills. Through a combination of quantitative analysis and qualitative exploration, several key findings have emerged.

Firstly, the assessment of current skill levels among Information Technology students reveals a spectrum of proficiency, with significant gaps in foundational knowledge observed across different academic levels. While there is a gradual improvement in skills as students progress through their studies, a substantial number still struggle with applying theoretical concepts to practical programming tasks.

The identification of challenges and obstacles underscores the need for targeted interventions. Issues such as the lack of practical experience, inadequate instructional support, and rapid
technological advancements present formidable barriers to effective learning. These findings emphasize the importance of integrating practical learning opportunities, enhancing instructional support, and updating the curriculum to align with industry demands.

The implications of this study extend beyond Tan Trao University to the broader field of Information Technology education. By implementing the proposed solutions, educational institutions can foster a more robust learning environment that prepares students not only with technical proficiency but also with critical thinking, problem-solving, and collaboration skills essential for success in the tech industry.

However, this study is not without limitations. The research primarily focuses on a single institution and may not fully capture the diversity of challenges and solutions across different educational contexts. Additionally, the reliance on self-reported data and the limited scope of qualitative interviews may introduce biases and restrict the generalizability of findings.

Looking forward, future research should explore longitudinal studies to track the long-term effectiveness of implemented strategies. Comparative studies across multiple institutions could provide broader insights into best practices for programming education. Furthermore, investigating innovative teaching methodologies and emerging technologies could uncover new avenues for enhancing programming skills and preparing students for evolving industry needs.

In conclusion, addressing the identified challenges through strategic interventions can significantly enhance the programming skills of Information Technology students at Tan Trao University and similar institutions. By continually refining educational practices and adapting to technological advancements, educators can empower the next generation of IT professionals to thrive in a rapidly changing digital landscape.

ACKNOWLEDGEMENTS
This research is funded by Tan Trao University in Tuyen Quang Province, Vietnam.

REFERENCES

